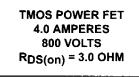
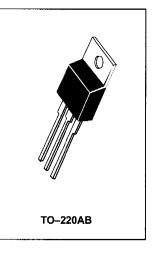
New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

## Designer's™ Data Sheet **TMOS E-FET** ™ **Power Field Effect Transistor** N-Channel Enhancement-Mode Silicon Gate

This high voltage MOSFET uses an advanced termination scheme to provide enhanced voltage–blocking capability without degrading performance over time. In addition, this advanced TMOS E–FET is designed to withstand high energy in the avalanche and commutation modes. The new energy efficient design also offers a drain–to–source diode with a fast recovery time. Designed for high voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.


- Robust High Voltage Termination
- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- IDSS and VDS(on) Specified at Elevated Temperature




D

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960







## **MAXIMUM RATINGS** (T<sub>C</sub> = 25°C unless otherwise noted)

| Rating                                                                                                                                                                                                             | Symbol                               | Value            | Unit          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|---------------|
| Drain-Source Voltage                                                                                                                                                                                               | VDSS                                 | 800              | Vdc           |
| Drain–Gate Voltage ( $R_{GS}$ = 1.0 M $\Omega$ )                                                                                                                                                                   | VDGR                                 | 800              | Vdc           |
| Gate–Source Voltage — Continuous<br>— Non–Repetitive (t <sub>p</sub> ≤ 10 ms)                                                                                                                                      | V <sub>GS</sub><br>VGSM              | ± 20<br>± 40     | Vdc<br>Vpk    |
| Drain Current — Continuous<br>— Continuous @ 100°C<br>— Single Pulse (t <sub>p</sub> ≤ 10 μs)                                                                                                                      | lD<br>ID<br>МФI                      | 4.0<br>2.9<br>12 | Adc<br>Apk    |
| Total Power Dissipation<br>Derate above 25°C                                                                                                                                                                       | ۴ <sub>D</sub>                       | 125<br>1.0       | Watts<br>W/°C |
| Operating and Storage Temperature Range                                                                                                                                                                            | TJ, Tstg                             | -55 to 150       | °C            |
| Single Pulse Drain-to-Source Avalanche Energy — Starting T <sub>J</sub> = $25^{\circ}$ C (V <sub>DD</sub> = 100 Vdc, V <sub>GS</sub> = 10 Vdc, I <sub>L</sub> = 8.0 Apk, L = 10 mH, R <sub>G</sub> = $25 \Omega$ ) | EAS                                  | 320              | mJ            |
| Thermal Resistance — Junction to Case<br>— Junction to Ambient                                                                                                                                                     | R <sub>0JC</sub><br>R <sub>0JA</sub> | 1.0<br>62.5      | °C/W          |
| Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds                                                                                                                                     | TL                                   | 260              | °C            |



NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

## **Quality Semi-Conductors**

## MTP4N80E

| $ \begin{array}{ c c c c c } \hline Gate Threshold Voltage (V_{DS} = V_{GS}, Ip = 250 \ \mu Adc) \\ Temperature Coefficient (Negative) \\ \hline Static Drain–Source On–Resistance (V_{GS} = 10 \ Vdc, \ Ip = 2.0 \ Adc) \\ \hline Drain–Source On–Voltage (V_{GS} = 10 \ Vdc) \\ (Ip = 4.0 \ Adc) \\ (Ip = 4.0 \ Adc) \\ (Ip = 2.0 \ Adc, \ T_J = 125^{\circ}C) \\ \hline \hline \\ Forward Transconductance (V_{DS} = 15 \ Vdc, \ Ip = 2.0 \ Adc) \\ \hline \\ Forward Transconductance (V_{DS} = 15 \ Vdc, \ Ip = 2.0 \ Adc) \\ \hline \\ Forward Transconductance (V_{DS} = 15 \ Vdc, \ Ip = 2.0 \ Adc) \\ \hline \\ Portal Capacitance \\ \hline \\ \hline Dutput Capacitance \\ \hline \\ \hline \\ Output Capacitance \\ \hline \\ Reverse Transfer Capacitance \\ \hline \\ \hline \\ Turn–On Delay Time \\ Rise Time \\ \hline \\ Turn–On Delay Time \\ (V_{DD} = 400 \ Vdc, \ Ip = 4.0 \ Adc, \\ V_{GS} = 10 \ Vdc, \\ R_G = 9.1 \ \Omega) \\ \hline \\ \hline \\ \hline \\ Fall Time \\ \hline \\ \hline \\ \hline \\ Gate Charge \\ (See Figure 8) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Тур        | Typ Max         | Unit         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1          | I               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.02       |                 | Vdc<br>mV/°C |
| ON CHARACTERISTICS (1)VGS(th)2.0<br>Gate Threshold Voltage<br>(VDS = VGS, the 250 µAdc)<br>Temperature Coefficient (Negative)VGS(th)2.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =          | — 10<br>— 100   | μAdc         |
| $ \begin{array}{ c c c c } \hline Gate Threshold Voltage (V_{DS} = V_{GS}, I_D = 250 \ \mu Adc) \\ \hline Temperature Coefficient (Negative) \\ \hline Static Drain–Source On–Resistance (V_{GS} = 10 \ Vdc, I_D = 2.0 \ Adc) \\ \hline Drain–Source On–Voltage (V_{GS} = 10 \ Vdc) \\ (I_D = 4.0 \ Adc) \\ (I_D = 4.0 \ Adc) \\ (I_D = 4.0 \ Adc) \\ (I_D = 2.0 \ Adc, T_J = 125^{\circ}C) \\ \hline \hline Forward Transconductance (V_{DS} = 15 \ Vdc, I_D = 2.0 \ Adc) \\ \hline Prive Character ISTICS \\ \hline Input Capacitance \\ \hline Output Capacitance \\ \hline Output Capacitance \\ \hline Output Capacitance \\ \hline Turn–On Delay Time \\ Rise Time \\ \hline Turn–On Delay Time \\ (V_{DD} = 400 \ Vdc, I_D = 4.0 \ Adc, V_{GS} = 0 \ Vdc, R_G = 9.1 \ \Omega) \\ \hline Fall Time \\ \hline Fall Time \\ \hline Fall Time \\ \hline Gate Charge \\ (See Figure 8) \\ \hline (V_{DS} = 400 \ Vdc, I_D = 4.0 \ Adc, V_{GS} = 10 \ Vdc) \\ \hline I_S = 4.0 \ Adc, V_{GS} = 0 \ Vdc, I_J = 125^{\circ}C) \\ \hline \hline Forward On–Voltage (1) \\ \hline (I_S = 4.0 \ Adc, V_{GS} = 0 \ Vdc) \\ \hline (I_S = 4.0 \ Adc, V_{GS} = 0 \ Vdc, I_J = 125^{\circ}C) \\ \hline \hline \\ Forward On–Voltage (1) \\ \hline (I_S = 4.0 \ Adc, V_{GS} = 0 \ Vdc, I_J = 125^{\circ}C) \\ \hline \hline \\ Reverse Recovery Time \\ \hline \\ Reverse Recovery Stored Charge \\ \hline \\ Reverse Recovery Stored Charge \\ \hline \\ \hline \\ Reverse Recovery Stored Charge \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _          | — 100           | nAdc         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •          | •               |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0<br>7.0 |                 | Vdc<br>mV/⁰C |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.95       | 1.95 3.0        | Ohm          |
| DYNAMIC CHARACTERISTICSInput Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$ $C_{iss}$ Output Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$ $C_{oss}$ Reverse Transfer Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$ $C_{oss}$ SWITCHING CHARACTERISTICS (2)Turn-On Delay Time $(V_{DD} = 400 \text{ Vdc}, I_D = 4.0 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, R_G = 9.1 \Omega)$ $t_d(on)$ Rise Time $(V_{DS} = 400 \text{ Vdc}, I_D = 4.0 \text{ Adc}, V_{GS} = 10 \text{ Vdc})$ $t_f$ Gate Charge<br>(See Figure 8) $(V_{DS} = 400 \text{ Vdc}, I_D = 4.0 \text{ Adc}, V_{GS} = 10 \text{ Vdc})$ $Q_T$ $Q_2$ $Q_3$ SOURCE-DRAIN DIODE CHARACTERISTICS $(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$<br>$(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, I_J = 125^{\circ}C)$ $V_{SD}$ Reverse Recovery Time<br>(See Figure 14) $(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, I_J = 125^{\circ}C)$ $V_{SD}$ Reverse Recovery Stored Charge $(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, I_J = 125^{\circ}C)$ $V_{SD}$ Reverse Recovery Stored Charge $(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, I_J = 125^{\circ}C)$ $V_{SD}$ Reverse Recovery Stored Charge $(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, I_J = 125^{\circ}C)$ $V_{SD}$ $Q_{RR}$ $(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, I_J = 125^{\circ}C)$ $V_{SD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.24<br>—  | 8.24 12<br>— 10 | Vdc          |
| $\begin{array}{ c c c c c } \hline \text{Input Capacitance} & (V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, \\ f = 1.0 \text{ MHz}) & \hline C_{iss} & - \\ \hline C_{OSS} & - \\ \hline C_{rss} & - \\ \hline C_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3        | 4.3 —           | mhos         |
| $ \begin{array}{ c c c c } \hline \text{Output Capacitance} & (V_{DS} = 25  \text{Vdc},  V_{GS} = 0  \text{Vdc}, \\ f = 1.0  \text{MHz}) & \hline C_{OSS} & - \\ \hline C_{rSS} & - \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                 | L            |
| $ \begin{array}{c c} \mbox{F} = 1.0 \ \mbox{MHz} \end{pmatrix} \end{array} \begin{array}{c c} \mbox{F} = 1.0 \ \mbox{MHz} \end{pmatrix} \end{array} \begin{array}{c c} \mbox{F} = 1.0 \ \mbox{MHz} \end{pmatrix} \end{array} \begin{array}{c c} \mbox{F} = 1.0 \ \mbox{MHz} \end{pmatrix} \begin{array}{c c} \mbox{F} = 1.0 \ \mbox{MHz} \end{pmatrix} \begin{array}{c c} \mbox{F} = 1.0 \ \mbox{MHz} \end{pmatrix} \end{array} \begin{array}{c c} \mbox{F} = 1.0 \ \mbox{MHz} \end{pmatrix} \end{array} \begin{array}{c c} \mbox{F} = 1.0 \ \mbox{MHz} \end{pmatrix} \end{array} \begin{array}{c c} \mbox{F} = 1.0 \ \mbox{MHz} \end{pmatrix} \end{array} \begin{array}{c c} \mbox{MHz} \end{pmatrix} \begin{array}{c c} \mbox{F} = 1.0 \ \mbox{MHz} \end{pmatrix} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{pmatrix} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{pmatrix} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{pmatrix} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c c} \mbox{MHz} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}$                         | 1320       | 1320 2030       | pF           |
| $ \begin{array}{ c c c c } \hline Reverse Transfer Capacitance & \hline C_{rss} & - \\ \hline SWITCHING CHARACTERISTICS (2) \\ \hline Turn-On Delay Time & \\ \hline Rise Time & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 187        | 187 400         |              |
| $\begin{tabular}{ c c c c } \hline Turn-On Delay Time & $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72         | 72 160          |              |
| $ \begin{array}{c} \mbox{Rise Time} & (VDD = 400 \ Vdc, \ ID = 4.0 \ Adc, \\ VGS = 10 \ Vdc, \\ RG = 9.1 \ \Omega) & tr & \\ \hline td(off) & \\ \hline td(off) & \\ \hline tf & \\ \hline tf & \\ \hline 02 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •          | • · · · ·       | •            |
| $\begin{tabular}{ c c c c c c } \hline Turn-Off Delay Time & V_{GS} = 10 \ Vdc, \\ R_G = 9.1 \ \Omega) & t_f & \\ \hline Tall Time & t_f & \\ \hline Gate Charge \\ (See Figure 8) & (V_{DS} = 400 \ Vdc, \ I_D = 4.0 \ Adc, \\ V_{GS} = 10 \ Vdc) & \frac{Q_T & \\ Q_2 & \\ Q_3 & \\ \hline Q_3 & \\ \hline \\ \hline SOURCE-DRAIN DIODE CHARACTERISTICS & \hline \\ \hline \\ \hline \\ Forward On-Voltage (1) & (I_S = 4.0 \ Adc, \ V_{GS} = 0 \ Vdc) \\ (I_S = 4.0 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_J = 125^\circ C) & - \\ \hline \\ \hline \\ \hline \\ Reverse Recovery Time \\ (See Figure 14) & (I_S = 4.0 \ Adc, \ V_{GS} = 0 \ Vdc, \\ d _S/dt = 100 \ A/\mu s) & t_f & \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13         | 13 30           | ns           |
| $\begin{tabular}{ c c c c c c } \hline Turn-Off Delay Time & $$R_G = 9.1 \Omega$) & $td(off)$ & $-$$ \\ \hline Fall Time & $$tf$ & $-$$ \\ \hline Gate Charge (See Figure 8) & $$(V_{DS} = 400 \ Vdc, \ I_D = 4.0 \ Adc, $$$ $V_{CS} = 10 \ Vdc$)$ & $$Q_T$ & $-$$ \\ \hline $Q_1$ & $-$$ \\ \hline $Q_2$ & $-$$ \\ \hline $Q_2$ & $-$$ \\ \hline $Q_3$ & $-$$ \\ \hline $Q_3$ & $-$$ \\ \hline $Q_3$ & $-$$ \\ \hline $SOURCE-DRAIN DIODE CHARACTERISTICS$ & $$$ \\ \hline $Forward On-Voltage (1)$ & $$(I_S = 4.0 \ Adc, $V_{GS} = 0 \ Vdc$)$ & $$VSD$ & $$-$$ \\ \hline $Reverse Recovery Time$ & $$(I_S = 4.0 \ Adc, $V_{GS} = 0 \ Vdc$, $T_J = 125^\circ$C$)$ & $$VSD$ & $$-$$ \\ \hline $Reverse Recovery Time$ & $$$(I_S = 4.0 \ Adc, $V_{GS} = 0 \ Vdc$, $$$ \\ $dI_S/dt = 100 \ A/\mu$$)$ & $$$ \\ \hline $the $$ $the $$ $-$$ \\ \hline $Q_{RR}$ & $-$ \\ \hline $Q_{RR}$ & $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36         | 36 90           |              |
| $ \begin{array}{c c} Gate Charge \\ (See Figure 8) \\ (V_{DS} = 400 \ Vdc, \ I_{D} = 4.0 \ Adc, \\ V_{GS} = 10 \ Vdc) \\ \hline \end{array} \\ \begin{array}{c c} Q_{T} & \\ \hline Q_{1} & \\ \hline Q_{2} & \\ \hline Q_{3} & \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} SOURCE-DRAIN \ DIODE \ CHARACTERISTICS \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} Forward \ On-Voltage \ (1) \\ (I_{S} = 4.0 \ Adc, \ V_{GS} = 0 \ Vdc) \\ (I_{S} = 4.0 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C) \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c c} Reverse \ Recovery \ Time \\ (See \ Figure \ 14) \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} I_{S} = 4.0 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C \\ \hline \end{array} \\ \hline \begin{array}{c c} I_{S} = 4.0 \ Adc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 125^{\circ}C \\ \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline  \\ \hline \end{array} \\ \hline  \\ \hline \end{array} \\ \hline \end{array} \\ \hline  \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline  \\ \hline \end{array} \\ \hline  \\ \hline  \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline  \\ \hline  \\ \hline \end{array} \\ \hline  \\ \hline  \\ \hline \end{array} \\ \hline  \\ \hline \end{array} \\ \hline \end{array} \\ \hline  \\ \hline \end{array} \\ \hline  \\ \\  \\ \hline  \\ \\ \end{array} \\  \\ \hline  \\ \\  \\ \hline  \\ \hline  \\ \hline  \\ \\  \\ \hline  \\ \\  \\ \hline  \\ \\ \\  \\ \hline  \\ \\ \\  \\ \hline  \\ \\  \\ \\ \\  \\ \\  \\ \\  \\ \\ \\  \\ \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\ \\  \\ \\  \\ \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\ \\ \\  \\ \\  \\ \\  \\ \\  \\ | 40         | 40 80           |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30         | 30 75           |              |
| $ \begin{array}{ c c c c c } & (V_{DS} = 400 \ Vdc, \ I_{D} = 4.0 \ Adc, \\ V_{GS} = 10 \ Vdc) & \hline & Q_{2} & \\ \hline & Q_{3} & \\ \hline & Q_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36         | 36 80           | nC           |
| $V_{GS} = 10 \text{ Vdc}) \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.0        | 7.0 —           |              |
| SOURCE-DRAIN DIODE CHARACTERISTICSForward On-Voltage (1) $(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$<br>$(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}C)$ $-$<br>$-$ Reverse Recovery Time<br>(See Figure 14) $(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}C)$ $t_{rr}$ $-$ Reverse Recovery Time<br>$(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}C)$ $t_{rr}$ $-$ Reverse Recovery Time<br>$(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}C)$ $t_{rr}$ $-$ Reverse Recovery Stored Charge $(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}C)$ $t_a$ Reverse Recovery Stored Charge $(I_S = 4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}C)$ $T_{rr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.5       | 16.5 —          |              |
| $ \begin{array}{ c c c c c } \hline Forward On-Voltage (1) & (I_S = 4.0 \mbox{ Adc}, V_{GS} = 0 \mbox{ Vdc}) & VSD & - \\ \hline & (I_S = 4.0 \mbox{ Adc}, V_{GS} = 0 \mbox{ Vdc}, T_J = 125^{\circ}C) & \hline & - \\ \hline & Reverse \mbox{ Recovery Time} & (I_S = 4.0 \mbox{ Adc}, V_{GS} = 0 \mbox{ Vdc}, \\ \hline & (I_S = 4.0 \mbox{ Adc}, V_{GS} = 0 \mbox{ Vdc}, \\ \hline & dI_S/dt = 100 \mbox{ A/}\mu s) & \hline & t_a & - \\ \hline & t_b & - \\ \hline & Q_{RR} & - \\ \hline & \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12         | 12              |              |
| $ \begin{array}{c} (I_{S} = 4.0 \text{ Adc}, \text{ V}_{GS} = 0 \text{ Vdc}, \text{ T}_{J} = 125^{\circ}\text{C}) \\ \hline \\ \text{Reverse Recovery Time} \\ (See Figure 14) \\ \hline \\ (I_{S} = 4.0 \text{ Adc}, \text{ V}_{GS} = 0 \text{ Vdc}, \\ dI_{S}/dt = 100 \text{ A}/\mu\text{s}) \\ \hline \\ \hline \\ \text{Reverse Recovery Stored Charge} \\ \hline \\ \hline \\ \begin{array}{c} - \\ - \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \end{array} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 |              |
| (See Figure 14)(IS = 4.0 Adc, VGS = 0 Vdc,<br>dIS/dt = 100 A/ $\mu$ s)IIReverse Recovery Stored Charge $Q_{RR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.812      |                 | Vdc          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 557        | 557 —           | ns           |
| dl <sub>S</sub> /dt = 100 Å/µs) tb —   Reverse Recovery Stored Charge Q <sub>RR</sub> —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100        | 100 —           |              |
| Reverse Recovery Stored Charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 457        | 457 —           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.33       | 2.33 —          | μC           |
| INTERNAL PACKAGE INDUCTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1               | 1            |

| Internal Drain Inductance<br>(Measured from contact screw on tab to center of die)<br>(Measured from the drain lead 0.25" from package to center of die) | LD | _ | 3.5<br>4.5 | _ | nH |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|------------|---|----|
| Internal Source Inductance<br>(Measured from the source lead 0.25" from package to source bond pad)                                                      | LS | - | 7.5        | - | nH |

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperature.